Nexperia today announced a range of highly efficient and robust automotive qualified silicon carbide (SiC) MOSFETs with RDS(on) values of 30, 40 and 60 mΩ. These devices (NSF030120D7A0-Q, NSF040120D7A1-Q, NSF060120D7A0-Q), which deliver industry-leading figures-of-merit (FoM), were previously offered in industrial grade and have now been awarded AEC-Q101 certification. This makes them suitable for automotive applications like onboard chargers (OBC) and traction inverters in electric vehicles (EV) as well as for DC-DC converters, heating ventilation and air-conditioning systems (HVAC). These switches are housed in the increasingly popular surface mounted D2PAK-7 package which is more suitable for automated assembly operations than through-hole devices.
RDS(on) is a critical performance parameter for SiC MOSFETs as it impacts conduction losses. However, concentrating on the nominal value, neglects the fact that it can increase by more than 100% as device operating temperatures rise, resulting in considerable rise of conduction losses. The temperature stability is even more critical when SMD package technologies are used compared to through-hole technology since devices are cooled through the PCB. Nexperia identified this as a limiting factor in the performance of many currently available SiC devices and leveraged the features of its innovative process technology to ensure that its new SiC MOSFETs offer industry-leading temperature stability, with the nominal value of RDS(on) increasing by only 38% over an operating temperature range from 25 °C to 175 °C. This feature enables customers to address higher output power in their applications achieved with a higher nominal 25°C rated RDS(on) from Nexperia compared to other vendors without sacrificing performance.
“This feature allows to get more power out of the selected Nexperia SiC MOSFET devices compared to similarly rated RDS(on) devices from other vendors, delivering a clear cost advantage for customers on semiconductor level. Additionally, relaxed cooling requirements, more compact passive components, and higher achievable efficiency allow customers more degrees of freedom in their design and lower total cost of ownership. We’re especially excited that these products are now available for the automotive market, where their performance and efficiency benefits can make a real difference in next-generation vehicle designs”, says Edoardo Merli, SVP and Head of Business Group Wide Bandgap, IGBT & Modules (WIM).
Nexperia is planning to release automotive-qualified versions of its 17 mΩ and 80 mΩ RDS(on) SiC MOSFETs in 2025.
SOURCE: Nexperia