Mitsubishi Electric and the University of Tokyo reveal new mechanism for enhancing reliability of SiC power semiconductor devices

Mitsubishi Electric Corporation (TOKYO: 6503) and the University of Tokyo announced today what they believe to be an all-new mechanism for enhancing the reliability of silicon carbide (SiC) power semiconductor devices in power electronics systems. The new mechanism was realized as a result of confirming that sulfur beneath the interface of gate oxide and SiC … Continued

Mitsubishi Electric Corporation (TOKYO: 6503) and the University of Tokyo announced today what they believe to be an all-new mechanism for enhancing the reliability of silicon carbide (SiC) power semiconductor devices in power electronics systems.

The new mechanism was realized as a result of confirming that sulfur beneath the interface of gate oxide and SiC captures some of the electrons conducting in the device’s current path, which increases the threshold voltage without changing the device’s on-resistance. The mechanism is expected to lead to more reliable power electronics equipment offering superior tolerance to electro-magnetic noise, which is known to cause system malfunctions.

The research achievement was initially announced at The International Electron Devices Meeting (IEDM2018) in San Francisco, California on December 3 (PST). Going forward, Mitsubishi Electric will continue refining the design and specifications of its SiC metal-oxide-semiconductor field-effect transistor (SiC MOSFET) to further enhance the reliability of SiC power semiconductor devices.

In their research, Mitsubishi Electric handled the design and fabrication of the SiC power semiconductor devices and analysis of sulfur’s capture of electrons in the current path, while the University of Tokyo handled measurement of electron scattering. Until now, it had been assumed that compared to conventional nitrogen or phosphorus, sulfur is not a suitable element to supply electrons for current conduction in SiC power semiconductor devices. Mitsubishi Electric and the University of Tokyo, however, focused on a different property of sulfur, namely, that sulfur in SiC inherently tends to capture electrons. Confirmation of this property was the basis of developing the new mechanism for SiC power semiconductor devices.

Please click here to see full release:

SOURCE: Mitsubishi Electric

Welcome back , to continue browsing the site, please click here